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Abstract
We present a cellular automaton simulating the behaviour of public bus transport
in several Mexican cities. The headway statistics obtained from the model is
compared to the measured time intervals between subsequent bus arrivals to
a given bus stop and to a spacing distribution resulting from a random matrix
theory.

PACS numbers: 05.65.+b, 45.70.Vn

Public transport in Mexico is organized differently to that in Europe. First, no leading
companies are responsible for city transport. Thus, there are no timetables for city buses and
sometimes not even well-defined bus stops. Moreover, the driver is usually the owner of the
bus and so his aim is to maximize the income. Because every passenger boarding the bus
has to pay, the driver tries to collect the largest possible number of passengers. When not
regulated, the time interval during which two subsequent buses pass a given point will display
a Poissonian distribution. This is a consequence of the absence of correlations between the
motion of different buses. Such a situation is, however, not welcomed by the drivers because
then the probability density that two buses will arrive at a bus stop within short time interval
is large. In this case, the first bus collects all the waiting passengers and the second bus
that arrives slightly later will find the stop practically empty. This simple reasoning makes it
clear that the existence of certain correlations between buses, which will change the Poisson
process, will be favourable. Indeed, in Mexico various strategies have been developed to
create such correlations. Here we discuss the situation in three cities: Cuernavaca, Puebla and
Mexico City.

In Puebla, there is no additive mechanism that helps to increase the bus correlation. Hence,
the headway statistics of the buses in this city should be close to Poissonian. In Cuernavaca,
in turn, information about the times when buses pass certain points are noted and then sold to
the bus drivers (there is a real market with this information). The driver can, in such a way,
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change the velocity of the bus depending on the position of the bus in front of him and a
bus–bus correlation appears.

To describe the correlations, we use a modified version of the celebrated Nagel–
Schreckenberg cellular automaton (CA); see [1, 2]. Consider N equal cells on the line (for our
purpose we define the length of one cell as 30 m) and n particles (buses) moving along it. Thus,
c = n

N
is the bus density and d̄ = c−1 is the mean distance between two neighbouring buses.

Furthermore, we define the maximal velocity vmax of the bus and its probability p to slow down
p ∈ [0, 1]. The Nagel–Schreckenberg model describes the dynamics of the system with the
help of the following update rules. In time t = 0, the positions xi of the particle i = 1, . . . , n

are integer numbers randomly chosen from the set 1, . . . , N satisfying the condition xi−1 > xi

for every i = 2, . . . , n. Furthermore, in time t = 0 the velocity vi of the ith particle is set to
zero for all i: vi(0) = 0. The buses start to move with velocity v according to the update rules
that have to be applied simultaneously to all particles.

• Step one: When the velocity of the bus is smaller than a maximal velocity vmax, it increases
its velocity by one

vi(t + 1) = min{vi(t) + 1; vmax}; (1)

• Step two: Particles with positive velocities are randomly slowed down

vi(t + 1) = vi(t + 1) − 1 (2)

with probability p;
• Step three: Particles update their positions according to

xi(t + 1) = min {xi(t) + vi(t + 1); xi−1(t + 1) − 1} (3)

i.e. the particles move according to the rule xi(t + 1) = xi(t)+vi(t + 1) with the restriction
that they cannot occupy the same cell or overtake each other. In this case, the particle
hops to the cell behind the occupied one.

To create a modification of the model and to adapt it to the situation in Mexico, we change
the update rules on a subset M of possible bus positions where the information is passed to the
driver. (The density of those points will be denoted by a: a = M/N .)

To change the model we add to steps (1), (2) and (3) an additive step (4) that takes into
account the processing of the information.

At the points j ∈ M , the information about the time interval �t to a preceding bus, which
has passed that point, is available to the driver. Using this, the driver can modify the bus
velocity; to speed up if �t > t̄ or to slows down for �t < t̄ . (Recall that t̄ is the mean time
interval between subsequent buses.) Hence we change the model by adding

• Step four:

vj (t) = vj (t) + 1

if ti(j ) − ti−1(j) < t̄ (4)

vj (t) = vj (t) − 1

if ti(j ) − ti−1(j) > t̄ where ti (j ) denotes the time when a bus i passed through the point
j : xi(ti(j)) = j .

Using the modified model, we focus on the headway statistics, i.e. on the probability
distribution of the time intervals �t between two subsequent buses passing a given point and
we compare it with the results obtained in the cities. For the simulation of the transport in
Puebla, we choose c = 1/40, vmax = 2, p = 0.5 and a = 0, taking into account the fact that
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Figure 1. Time headway of the bus transport in Puebla. The curve represents the Poisson
distribution (5). The crosses display the time headway distribution of buses in Puebla and the bars
are taken from the CA model with a = 0.

there are no check points. It is not surprising that the headway statistics is in this case came
close to the Poisson distribution (see figure 1):

P(t) = e−t (5)

when t is the spacing re-scaled to the mean value equal to one. Besides the headway statistics,
we also compare a number variance �2(t) that is defined as

�2(t) = 〈(n(t) − t)2〉 (6)

where n(t) is the number of bus arrivals at a given point during the time period of the length t.
Note that 〈n(t)〉 = t due to the fact that 〈t〉 = 1. It can easily be checked that for a Poissonian
process

�2(t) = t . (7)

The number variance obtained from the data and from the simulation fits quite well with
this prediction (see figure 3). The data show, however, a small deviations from equation (7).
This is a manifestation of a weak interaction between the buses, which probably originates
from the fact that the buses interact through the number of passengers waiting on the stops.
Namely, when the distance between the buses is large, more passengers are waiting at the stop
and the bus is delayed longer at the stop.

To simulate the situation in Cuernavaca and in Mexico City, we use parameters
c = 1/40, vmax = 2, p = 0.5 and a = 1/36, which represent one bus per 1.2 km and
one check-point per 1 km approximately. The modified CA leads, in this case, to significant
changes in the time interval distribution (see figure 2). The distribution obtained from the
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Figure 2. Time headway of bus transport in Cuernavaca and Mexico City. The curve represents
the Wigner formula (8). The crosses display the time headway distribution of buses in Cuernavaca
and the bars represent the results of the CA model with a = 1/36. The results obtained for buses
in Mexico City are shown in the inset.

automaton fits well the observed time interval distribution. Moreover, both distributions
conform well with the Wigner distribution (see [3]):

P(t) = 32

π2
t2 e

4
π

t2
. (8)

It is well known that Wigner distribution describes the level spacing statistics of the
Gaussian unitary ensemble of random matrices. The random matrix theory in turn describes
the spacing distribution of certain one-dimensional interacting gas (Dyson’s gas). So the
link between the Wigner distribution and the headway statistics of the modified CA is not
surprising.

Similar agreement is observed also for the number variance (see figure 3) where random
matrix theory leads to

�2(t) = 1

π2
(ln 2πt + γ + 1) (9)

with γ ≈ 0.57 721 566 (see [4]).
However, as evident in figure 3, the interaction between buses in Cuernavaca and in Mexico

City is stronger than that resulting from the CA model, which leads to stronger correlations.
Whereas in the automaton model correlations exist between the nearest neighbours only, in
Cuernavaca and Mexico City we can recognize that interaction exists also between the first,
second and third neighbours.

We conclude that the modified Nagel–Schreckenberg CA successfully describes
microscopic properties of bus transport in some Mexican cities. The velocity of the buses is
influenced by the information about their mutual positions so that the drivers can optimize their
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Figure 3. Number variance of the public transport in some Mexican cities. The curve and line
represent the prediction of the random matrix theory (9) and (7), respectively. The crosses and
stars display number variance obtained from public bus transport in Cuernavaca and Mexico City,
respectively. The circles denote the results of the CA model for a = 1/36. The number variance
obtained from the transport in Puebla is displayed in the inset (crosses). The circles show the
results of the CA model obtained for a = 0.

rank in competing for the passengers to be transported. This finally increase the coordination
of the bus motion and changes the time headway statistics.
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